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MULTILINEAR PAGERANK∗
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Abstract. In this paper, we first extend the celebrated PageRank modification to a higher-
order Markov chain. Although this system has attractive theoretical properties, it is computationally
intractable for many interesting problems. We next study a computationally tractable approximation
to the higher-order PageRank vector that involves a system of polynomial equations called multilinear
PageRank. This is motivated by a novel “spacey random surfer” model, where the surfer remembers
bits and pieces of history and is influenced by this information. The underlying stochastic process
is an instance of a vertex-reinforced random walk. We develop convergence theory for a simple
fixed-point method, a shifted fixed-point method, and a Newton iteration in a particular parameter
regime. In marked contrast to the case of the PageRank vector of a Markov chain where the solution
is always unique and easy to compute, there are parameter regimes of multilinear PageRank where
solutions are not unique and simple algorithms do not converge. We provide a repository of these
nonconvergent cases that we encountered through exhaustive enumeration and randomly sampling
that we believe is useful for future study of the problem.
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1. Introduction. Google devised PageRank to help determine the importance
of nodes in a directed graph representing web pages (Page et al., 1999). Given a
random walk on a directed graph, the PageRank modification builds a new Markov
chain that always has a unique stationary distribution. This new random walk models
a “random surfer” that with probability α < 1 takes a step according to the Markov
chain and with probability 1 − α randomly jumps according to a fixed distribution.
If P is a column stochastic matrix that represents the random walk on the original
graph, then the PageRank vector x is unique and solves the linear system

x = αPx+ (1 − α)v,

where v is a stochastic vector and α is a probability (section 2.2 has a formal deriva-
tion). The simple Richardson iteration even converges fast for the values of α that
are used in practice.

Although Google described PageRank for the web graph, the same methodology
has been deployed in many applications where the importance of nodes provides in-
sight into an underlying phenomena represented by a graph (Morrison et al., 2005;
Freschi, 2007; Winter et al., 2012; Gleich, 2015). We find the widespread success of the
PageRank methodology intriguing and believe that there are a few important features
that contributed to PageRank’s success. First and second are the uniqueness and fast
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convergence. These properties enable reliable and efficient evaluation of the impor-
tant nodes. Third, in most applications of PageRank, the input graph may contain
modeling or sampling errors, and thus PageRank’s jumps are a type of regularization.
This may help capture important features in the graph despite the noise.

In this paper, we begin by developing the PageRank modification to a higher-
order Markov chain (section 3). These higher-order Markov chains model stochastic
processes that depend on more history than just the previous state. (We review
them formally in section 2.3.) In a second-order chain, for instance, the choice of
state at the next time step depends on the last two states. However, this structure
corresponds to a first-order, or traditional, Markov chain on a tensor product state-
space. We show that higher-order PageRank enjoys the same uniqueness and fast
convergence as in the traditional PageRank problem (Theorem 3.4, Corollary 3.5),
although computing these stationary distributions is prohibitively expensive in terms
of memory requirements.

Recent work by Li and Ng (2013) provides an alternative: they consider a rank-1
approximation of these distributions. When we combine the PageRank modification
of a higher-order Markov chain with the Li–Ng approximation, we arrive at the multi-
linear PageRank problem (section 4). For the specific case of an n-state second-order
Markov chain, described by an n × n × n transition probability table, the problem
becomes finding the solution x of the polynomial system of equations,

x = αR(x⊗ x) + (1 − α)v,

where R is an n×n2 column stochastic matrix (that represents the probability table),
α is a probability, ⊗ is the Kronecker product, and v is a probability distribution over
the n-states encoded as an n-vector. We have written the equations in this way to
emphasize the similarity to the standard PageRank equations.

One of the key contributions of our work is that the solution x has an interpre-
tation as the stationary distribution of a process we describe and call the “spacey
random surfer.” The spacey random surfer continuously forgets its own immediate
history but does remember the aggregate history and combines the current state with
this aggregate history to determine the next state (section 4.1). This process pro-
vides a natural motivation for the multilinear PageRank vector in relationship to the
PageRank random surfer. We build on recent advances in vertex reinforced random
walks (Pemantle, 1992; Benäım, 1997) in order to make this relationship precise.

There is no shortage of data analysis methods that involve tensors. These usually
go by taking an m-way array as an order-m tensor and then performing a tensor
decomposition. When m = 2, this is often the matrix SVD and the factors obtained
give the directions of maximal variation. When m > 2, the solution factors lose
this interpretation. Understanding the resulting decompositions may be problematic
without an identifiability result such as Anandkumar et al. (2013).

Our proposal differs in that our tensor represents a probability table for a stochas-
tic process and, instead of a decomposition, we seek an eigenvector that has a natural
interpretation as a stationary distribution. In fact, a general nonnegative tensor can
be regarded as a contingency table, which can be converted into a multidimensional
probability table. These tables may be regarded as the probability distribution of a
higher-order Markov chain, just like how a directed graph becomes a random walk.
This interpretation has already been successful in a number of applied studies (Li, Ng,
and Ye, 2011; Ng, Li, and Ye, 2011; Li, Ng, and Ye, 2014, 2012) with rigorous conver-
gence analysis (Li and Ng, 2015) and even eigenvalue analysis (Chu and Wu, 2014).
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For instance, Li and Ng (2015) employed theoretical tools similar to those we use to
show convergence and uniqueness for a more complex model involving m stochastic
tensors. Given the breadth of applications of tensors, our motivation was that the
multilinear PageRank vector would be a unique, meaningful stationary distribution
that we could compute quickly.

Multilinear PageRank solutions, however, are more complicated. They are not
unique for any α < 1 as was the case for PageRank, but only when α < 1/(m − 1),
where m − 1 is the order of the Markov chain (or m is the order of the underlying
tensor) as shown in Theorem 4.3. We then consider five algorithms to solve the
multilinear PageRank system: a fixed-point method, a shifted fixed-point method, a
nonlinear inner-outer iteration, an inverse iteration, and a Newton iteration (section 5).
These algorithms are all fast in the unique regime. Outside that range, we used
exhaustive enumeration and random sampling to build a repository of problems that
do not converge with our methods. Among the challenging test cases, the inner-
outer algorithm and Newton’s method have the most reliable convergence properties
(section 6). Our codes are available for others to use and to reproduce the figures of
this manuscript: https://github.com/dgleich/mlpagerank.

2. Background. The technical background for our paper includes a brief review
of Li and Ng’s factorization of the stationary distribution of a higher-order PageRank
Markov chain, which we discuss after introducing our notation.

2.1. Notation. Matrices are bold uppercase Roman letters, as in A; vectors are
bold lowercase Roman letters, as in x; and tensors are bold, underlined, uppercase
Roman letters, as in P . We use e to be the vector of all ones. Individual elements
such as Aij , xi, or Pijk are always written without boldface. In some of our results,
using subscripts is suboptimal, and we will use MATLAB indexing notation instead:
A(i, j), x(i), or P (i, j, k). An order-m, n-dimensional tensor has m indices that range
from 1 to n. We will use ⊗ to denote the Kronecker product. Throughout the paper,
we call a nonnegative matrix A column-stochastic if

∑
i Aij = 1. A stochastic tensor

is a tensor that is nonnegative and where the sum over the first index i is 1. We
caution our readers that what we call a “tensor” in this article really should be called
a hypermatrix, that is, a specific coordinate representation of a tensor. See Lim (2013)
for a discussion of the difference between a tensor and its coordinate representation.

We use S1, S2, . . . to denote a discrete time stochastic process on the state space
1, . . . , n. The probability of an event is denoted Pr(St = i) and Pr(St = i | St−1 = j) is
the conditional probability of the event. (For those experts in probability, we use this
simplifying notation instead of the natural filtration given the history of the process.)

2.2. PageRank. In order to justify our forthcoming use of the term higher-order
PageRank, we wish to precisely define a PageRank problem and PageRank vector. The
following definition captures the discussions in Langville and Meyer (2006).

Definition 2.1 (PageRank). Let P be a column stochastic matrix, let α be a
probability smaller than 1, and let v be a stochastic vector. A PageRank vector x is
the unique solution of the linear system

(2.1) x = αPx+ (1 − α)v.

We call the set (α,P ,v) a PageRank problem.
Note that the PageRank vector x is equivalently a Perron vector of the matrix

M = αP + (1− α)veT

https://github.com/dgleich/mlpagerank
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under the normalization that x ≥ 0 and eTx = 1. The matrix M is column stochastic
and encodes the behavior of the random surfer that, with probability α, transitions
according to the Markov chain with transition matrix P and, with probability (1−α),
“teleports” according to the fixed distribution v. When PageRank is used with a graph,
then P is almost always defined as the random walk transition matrix for that graph.
If a graph does not have a valid transition matrix, then there are a few adjustments
available to create one (Boldi et al., 2007).

When we solve for x using the power method on the Markov matrix M or the
Richardson iteration on the linear system (2.1), then we iterate

x0 = v, xk+1 = αPxk + (1− α)v.

This iteration satisfies the error bound

‖xk − x‖1 ≤ 2αk

for any stochastic x0. For values of α between 0.5 and 0.99, which occur most often
in practice, this simple iteration converges quickly.

2.3. Higher-order Markov chains. We wish to extend PageRank to higher-
order Markov chains and so we briefly review their properties. An mth-order Markov
chain S is a stochastic process that satisfies

Pr(St = i1 | St−1 = i2, . . . , S1 = it) = Pr(St = i1 | St−1 = i2, . . . , St−m = im+1).

In words, this means that the future state only depends on the pastm states. Although
the probability structure of a higher-order Markov chain breaks the fundamental
Markov assumption, any higher-order Markov chain can be reduced to a first-order,
or standard, Markov chain by taking a Cartesian product of its state space. Consider,
for example, a second-order n-state Markov chain S. Its transition probabilities are
Pijk = Pr(St+1 = i | St = j, St−1 = k). We will represent these probabilities as a
tensor P . The stationary distribution equation for the resulting first-order Markov
chain satisfies ∑

k

PijkXjk = Xij ,

where Xjk denotes the stationary probability on the product space. Here, we have
induced an n2 × n2 eigenvector problem to compute such a stationary distribution.
For such first-order Markov chains, Perron–Frobenius theory (Perron, 1907; Frobenius,
1908; Varga, 1962) governs the conditions when the stationary distribution exists.
However, in practice for a 100,000 × 100,000 × 100,000 tensor, we need to store
10,000,000,000 entries in X = [Xij ]. This makes it infeasible to work with large,
sparse problems.

2.4. Li and Ng’s approximation. As a computationally tractable alternative
to working with a first-order chain on the product state-space, Li and Ng (2013) define
a new type of stationary distribution for a higher-order Markov chain. Again, we
describe it for a second-order chain for simplicity. For each term Xij in the stationary
distribution they substitute a product xixj , and thus for the matrixX they substitute
a rank-1 approximation X = xxT , where

∑
i xi = 1. Making this substitution and

then summing over j yields an eigenvalue expression called an l2-eigenvalue by Lim
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(2005) and called a Z-eigenvalue by Qi (2005) (one particular type of tensor eigenvalue
problem) for x:∑

j

(∑
k

Pijkxjxk

)
=
∑
j

xixj = xi ⇔ Px2 = x,

where we’ve used the increasingly common notational convention

[Px2]i =
∑

jk Pijkxjxk

from Qi (2005). All these results extend beyond second-order chains, in a relatively
straightforward manner. Li and Ng present a series of theorems that govern existence
and uniqueness for such stationary distributions that we revisit later.

3. Higher-order PageRank. Recall the PageRank random surfer. With prob-
ability α, the surfer transitions according to the Markov chain, and with probabil-
ity 1 − α, the surfer transitions according to the fixed distribution v. We define a
higher-order PageRank by modeling a random surfer on a higher-order chain. With
probability α, the surfer transitions according to the higher-order chain, and with
probability 1 − α, the surfer teleports according to the distribution v. That is, if
P is the transition tensor of the higher-order Markov chain, then the higher-order
PageRank chain has a transition tensor M , where

M(i, j, . . . , �, k) = αP (i, j, . . . , �, k) + (1− α)vi.

Recall that any higher-order Markov chain can be reduced to a first-order chain by
taking a Cartesian product of the state space. We call this the reduced form of a
higher-order Markov chain, and in the following example we explore the reduced form
of a second-order PageRank modification .

Example 3.1. Consider the following transition probabilities:

P (·, ·, 1) =
⎡
⎣0 1

2 0
0 0 0
1 1

2 1

⎤
⎦ ; P (·, ·, 2) =

⎡
⎣1

2 0 1
0 1

2 0
1
2

1
2 0

⎤
⎦ ; P (·, ·, 3) =

⎡
⎣ 1

2
1
2 0

0 1
2 0

1
2 0 1

⎤
⎦ .

Figure 1 shows the state-space transition diagram for the reduced form of the chain
before and after its PageRank modification.

We define a higher-order PageRank tensor as the stationary distribution of the
reduced Markov chain, organized so that X(i, j, . . . , �) is the stationary probability
associated with the sequence of states � → · · · → j → i.

Definition 3.2 (higher-order PageRank). Let P be an order-m transition tensor
representing an (m−1)th order Markov chain, α be a probability less than 1, and v be
a stochastic vector. Then the higher-order PageRank tensor X is the order-(m − 1),
n-dimensional tensor that solves the linear system

X(i, j, . . . , �) = α
∑
k

P (i, j, . . . , �, k)X(j, . . . , �, k) + (1− α)vi
∑
k

X(j, . . . , �, k).

For the second-order case from Example 3.1, we now write this linear system in a
more traditional matrix form in order to make a few observations about its structure.
Let X be the PageRank tensor (or matrix, in this case). We have

(3.1) vec(X) = [αP + (1 − α)V ] vec(X),
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where P ,V ∈ R
n2×n2

, and V = eT ⊗ I ⊗ v. In this setup, the matrix P is sparse
and highly structured:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1/2 0 0 1/2 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1/2 0 0 1/2 0 0
0 1/2 0 0 0 0 0 1/2 0
0 0 0 0 1/2 0 0 1/2 0
0 1/2 0 0 1/2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

When α = 0.85 and v = (1/3)e, the higher-order PageRank matrix is

X =

⎡
⎣0.0411 0.0236 0.0586
0.0062 0.0365 0.0397
0.0761 0.0223 0.6959

⎤
⎦ .

More generally, both P and V have the following structure for the second-order case:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P111,v1 0 ··· 0 P112,v1 0 ··· 0 ··· P11n,v1 0 ··· 0
P211,v2 0 ··· 0 P212,v2 0 ··· 0 ··· P21n,v2 0 ··· 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
Pn11,vn 0 ··· 0 Pn12,vn 0 ··· 0 ··· Pn1n,vn 0 ··· 0

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
0 ··· 0 P1n1,v1 0 ··· 0 P1n2,v1 ··· 0 ··· 0 P1nn,v1
0 ··· 0 P2n1,v2 0 ··· 0 P2n2,v2 ··· 0 ··· 0 P2nn,v2

...
. . .

...
...

...
. . .

...
...

. . .
...

. . .
...

...
0 ··· 0 Pnn1,vn 0 ··· 0 Pnn2,vn ··· 0 ··· 0 Pnnn,vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the remainder of this section, we wish to show the relationship between the
reduced form of a higher-order PageRank chain and the definition of the PageRank
problem (Definition 2.1). This is not as trivial as it may seem! For instance, in the
second-order case, (3.1) is not of the correct form for Definition 2.1. But a slight bit
of massaging produces the equivalence.

Consider the vectorized equation for the stationary distribution matrix for the
second-order case (3.1) as

vec(X) = [αP + (1 − α)V ]︸ ︷︷ ︸
M

vec(X).

Our goal is to derive a PageRank problem in the sense of Definition 2.1 to find
vec(X). As it turns out, M2 will give us this PageRank problem. The idea is this: in
the first-order PageRank problem we lose all history after a single teleportation step
by construction. In this second-order PageRank problem, we keep around one more
state of history, hence, two steps of the second-order chain are required to see the
effect of teleportation as in the standard PageRank problem. Formally, the matrix
M2 can be written in terms of matrix P and V , i.e.,

M 2 = α2P 2 + α(1 − α)PV + α(1 − α)V P + (1− α)2V 2.

We now show that V 2 = (v⊗v)(eT⊗eT ) by exploiting two properties of the Kronecker
product: (A⊗B)(C ⊗D) = (AC)⊗ (BD) and aT ⊗ b = baT . Note that

V 2 = (eT ⊗ I ⊗ v)(eT ⊗ I ⊗ v) = [eT (eT ⊗ I)]⊗ [(I ⊗ v)v] = (eT ⊗ eT )⊗ (v ⊗ v).
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(a) The higher-order Markov chain (b) The higher-order PageRank chain

Fig. 1. The state space transitions for a higher-order Markov chain on the product-space and
the PageRank modification of that same chain with new transitions indicated in red. The transitions
for both chains must satisfy 〈j, k〉 → 〈i, j〉. Note that, unlike the PageRank modification of a first-
order Markov chain, the reduced form of the higher-order PageRank chain does not have a complete
set of transitions. For instance, there is no transition between 〈2, 3〉 and 〈1, 3〉.

This enables us to write a PageRank equation for vec(X):

vec(X) = M2 vec(X)

= α(2− α)
[

α
2−αP

2 + 1−α
2−α (PV + V P )

]
︸ ︷︷ ︸

P pr

vec(X) + (1 − 2α+ α2)v ⊗ v,

where we used the normalization eT vec(X) = 1. Thus we conclude as follows.
Lemma 3.3. Consider a second-order PageRank problem α,P ,v. Let P be the

matrix for the reduced form of P . Let M = αP+(1−α)V be the transition matrix for
the vector representation of the stationary distribution X. This stationary distribution
is the PageRank vector of a PageRank problem (2α− α2,P pr,v ⊗ v) in the sense of
Definition 2.1 with

P pr =
α

2− α
P 2 +

1− α

2− α
PV +

1− α

2− α
V P .

And we generalize as follows.
Theorem 3.4. Consider a higher-order PageRank problem α,P ,v where P is

an order-m tensor. Let P be the matrix for the reduced form of P . Let M = αP +
(1 − α)V be the transition matrix for the vector representation of the order-(m − 1),
n-dimensional stationary distribution tensor X. This stationary distribution is equal
to the PageRank vector of the PageRank problem

(1− (1− α)m−1,P pr,v ⊗ · · · ⊗ v︸ ︷︷ ︸
m − 1 terms

), where P pr =
Mm−1 − (1− α)m−1V m−1

1− (1− α)m−1
.

Proof. We extend the previous proof as follows. The matrix M is nonnegative
and has only a single recurrent class of all nodes consisting of all nodes in the reach of
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the set of nonzero entries in vi. Thus, the stationary distribution is unique. We need
to look at the m− 1 step transition matrix to find the PageRank problem. Consider
X as the stationary distribution eigenvector of the m− 1 step chain:

vec(X) = M vec(X) = Mm−1 vec(X).

The matrix Mm−1 can be written in terms of matrix P and V , i.e.,

Mm−1 =
(
(αP + (1 − α)V )m−1 − (1− α)m−1V m−1

)
+ (1− α)m−1V m−1.

The matrix V has the structure

V = eT ⊗ (I ⊗ · · · ⊗ I︸ ︷︷ ︸
m − 2 terms

)⊗ v.

We now expand V m−1 using the property of Kronecker products (A⊗B)(C ⊗D) =
(AC)⊗ (BD), repeatedly:

V m−1 =
[
eT ⊗ (I ⊗ · · · ⊗ I︸ ︷︷ ︸

m − 2 terms

)⊗ v
]
· · ·
[
eT ⊗ (I ⊗ · · · ⊗ I︸ ︷︷ ︸

m − 2 terms

)⊗ v
]

=
[
eT (eT ⊗ I)(eT ⊗ I ⊗ I) · · · (eT ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

m − 2 terms

)
]

⊗
[
(I ⊗ · · · ⊗ I︸ ︷︷ ︸
m − 2 terms

v)(I ⊗ I ⊗ v)(I ⊗ v)v
]

= (eT ⊗ · · · ⊗ eT︸ ︷︷ ︸
m − 1 terms

)⊗ (v ⊗ · · · ⊗ v︸ ︷︷ ︸
m − 1 terms

)

= (v ⊗ · · · ⊗ v︸ ︷︷ ︸
m − 1 terms

)(eT ⊗ · · · ⊗ eT︸ ︷︷ ︸
m − 1 terms

).

At this point, we are essentially done as we have shown that the stochastic Mm−1 has
the form Mm−1 = Z+(1−α)m−1(v⊗ · · ·⊗v)(eT ⊗ · · ·⊗ eT ). The statements in the
theorem follow from splitting Mm−1 = αprP pr+(1−αpr)(v⊗· · ·⊗v)(eT ⊗· · ·⊗eT ),
that is,

αpr = 1− (1 − α)m−1, P pr =
1

αpr

(
Mm−1 − (1− α)V m−1

)
.

The matrix P pr is stochastic because the final term in the expansion of Mm−1 is
(1 − α)V m−1; thus, the remainder is a nonnegative matrix with column sums equal
to a single constant less than 1.

Corollary 3.5. The higher-order PageRank stationary distribution tensor X
always exists and is unique. Also, the standard PageRank iteration will result in a

1-norm error of 2
(
1− (1− α)m−1

)k
after (m− 1)k iterations.

Hence, we retain all the attractive features of PageRank in the higher-order Page-
Rank problem. The uniqueness and convergence results in this section are not overly
surprising and simply clarify the relationship between the higher-order Markov chain
and its PageRank modification.



MULTILINEAR PAGERANK 1515

4. Multilinear PageRank. The tensor product structure in the state-space
and the higher-order stationary distribution make the straightforward approaches of
the previous section difficult to scale to large problems, such as those encountered in
modern bioinformatics and social network analysis applications. The scalability limit
is the memory required. Consider an n-state, second-order PageRank chain: (α,P ,v).
It requires O(n2) memory to represent the stationary distribution, which quickly
grows infeasible as n scales. To overcome this scalability limitation, we consider the
Li and Ng approximation to the stationary distribution with the following additional
assumption.

Assumption. There exists a method to compute Px2 that works in time propor-
tional to the memory used to represent P .

This assumption mirrors the fast matrix-vector product operator assumption in
iterative methods for linear systems, although here it is critical because there must be
at least n2 nonzeros in any second-order stochastic tensor P . If we could afford that
storage, then the higher-order techniques from the previous section would apply and
we would be under the scalability limit. We discuss how to create such fast operators
from sparse datasets in section 4.5.

The Li and Ng approximation to the stationary distribution of a second-order
Markov chain replaces the stationary distribution with a symmetric rank-1 factor-
ization: X = xxT , where

∑
i xi = 1. For a second-order PageRank chain, this

transformation yields an implicit expression for x:

(4.1) x = αPx2 + (1− α)v.

We prefer to write this equation in terms of the Kronecker product structure of the
tensor flattening along the first index. Let R := P (1) = �1(P ) be the n-by-n2,
stochastic flattening (see Golub and van Loan, 2013, section 12.4.5, for more on
flattenings or unfoldings of a tensor, and see Draisma and Kuttler, 2014, for the �
notation):

R =

⎡
⎢⎢⎢⎣

P111 · · · P1n1 P112 · · · P1n2 · · · P11n · · · P1nn

P211 · · · P2n1 P212 · · · P2n2 · · · P21n · · · P2nn

...
. . .

...
...

. . .
...

...
...

. . .
...

Pn11 · · · Pnn1 Pn12 · · · Pnn2 · · · Pn1n · · · Pnnn

⎤
⎥⎥⎥⎦ .

Then (4.1) is

x = αR(x⊗ x) + (1 − α)v.

Consider the tensor P from Example 3.1. The multilinear PageRank vector for this
case with α = 0.85 and v = (1/3)e is

x =

⎡
⎣0.19340.0761
0.7305

⎤
⎦ .

We generalize this second-order case to the order-m case in the following definition of
the multilinear PageRank problem.

Definition 4.1 (multilinear PageRank). Let P be an order-m tensor represent-
ing an (m − 1)th order Markov chain, α be a probability less than 1, and v be a
stochastic vector. Then the multilinear PageRank vector is a nonnegative, stochastic
solution of the following system of polynomial equations:

(4.2) x = αPx(m−1)+(1−α)v or equivalently x = αR(x⊗ · · · ⊗ x︸ ︷︷ ︸
m − 1 terms

)+(1−α)v,
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where R := P (1) = �1(P ) is an n-by-n(m−1) stochastic matrix of the flattened tensor
along the first index.

We chose the name multilinear PageRank instead of the alternative tensor Page-
Rank to emphasize the multilinear structure in the system of polynomial equations
rather than the tensor structure of P . Also, because the tensor structure of P is
shared with the higher-order PageRank vector, which could have then also been called
a tensor PageRank.

A multilinear PageRank vector x always exists because it is a special case of the
stationary distribution vector considered by Li and Ng. In order to apply their theory,
we consider the equivalent problem,

(4.3) x = (αR + (1− α)veT )(x⊗ · · · ⊗ x) = P̄xm−1,

where P̄ is the stochastic transition tensor whose flattening along the first index is
the matrix αR+ (1− α)veT . The existence of a stochastic solution vector x is guar-
anteed by Brouwer’s fixed-point theorem and, more immediately, by the stationary
distributions considered by Li and Ng. The existing bulk of Perron–Frobenius theory
for nonnegative tensors (Lim, 2005; Chang et al., 2008; Friedland et al., 2013), unfor-
tunately, is not helpful with existence of uniqueness issues as it applies to problems
where ‖x‖2 = 1 instead of the 1-norm.

Although the multilinear PageRank vector always exists, it may not be unique,
as shown in the following example.

Example 4.2. Let α = 0.99, v = [0, 1, 0]T , and

R =

⎡
⎣0 0 0 0 0 0 1/3 1 0
0 0 0 0 1 0 1/3 0 1
1 1 1 1 0 1 1/3 0 0

⎤
⎦ .

Then both x = [0, 1, 0]T and x = [0.1890, 0.3663, 0.4447]T solve the multilinear Page-
Rank problem.

4.1. A stochastic process: The spacey random surfer. The PageRank vec-
tor is equivalently the stationary distribution of the random surfer stochastic process.
The multilinear PageRank equation is the stationary distribution of a stochastic pro-
cess with a history dependent behavior that we call the spacey random surfer. For
simplicity, we describe this for the case of a second-order problem. Let St represent
the stochastic process for the spacey random surfer. The process depends on the
probability table for a second-order Markov chain P . Our motivation is that the
spacey surfer would like to transition as the higher-order PageRank Markov chain,
Pr(St+1 = i | St = j, St−1 = k) = αPijk + (1 − α)vi; however, on arriving at St = j,
the surfer spaces out and forgets that St−1 = k. Instead of using the true history
state, the spacey random surfer decides to guess that they came from a state they’ve
visited frequently. Let Yt be a random state that the surfer visited in the past, chosen
according to the frequency of visits to that state. (Hence, Yt = k is more likely if
the surfer visited state k frequently in the past.) The spacey random surfer then
transitions as

Pr(St+1 = i | St = j, Yt = k) = αPijk + (1− α)vi.

Let us now state the resulting process slightly more formally. Let Ft be the
natural filtration on the history of the process S1, . . . , St. Then

Pr(Yt = k | Ft) =
1

t+ n

(
1 +

t∑
r=1

Ind{Sr = k}
)
,
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where Ind{·} is the indicator event. In this definition, note that we assume that there
is an initial probability of 1/n of Yt taking any state. For instance, if n = 10 and
S1 = 5, S2 = 6, S3 = 5, and t = 3, then Yt is a random variable that takes value 6 with
probability 2/13 and value 5 probability 3/13. The stochastic process progresses as

Pr(St+1 = i | Ft) = α

n∑
k=1

P (i, St, k)
1 +

∑t
r=1 Ind{Sr = k}

t+ n
+ (1 − α)vi.

This stochastic process is a new type of vertex reinforced random walk (Pemantle,
1992).

We present the following heuristic justification for the equivalence of this process
with the multilinear PageRank vector. In our subsequent manuscript (Benson, Gleich,
and Lim, 2015), we use results from Benäım (1997) to make this equivalence precise
and also to study the process in more depth. Suppose the process has run for a
long time t 	 1. Let y be the probability distribution of selecting any state as Yt.
The vector y changes slowly when t is large. For some time in the future, we can
approximate the transitions as a first-order Markov chain:

Pr(St+1 = i | St = j) ≈ αPi,j,kyk + (1 − α)vi.

Let Rk = P (:, :, k) be a slice of the probability table; then the Markov transition
matrix is

α

n∑
k=1

Rkyk + (1− α)veT = αR(y ⊗ I) + (1 − α)veT = T .

Given this column-stochastic matrix, the resulting stationary distribution is a stochas-
tic vector x where Tx = x, that is,

x = αR(y ⊗ x) + (1− α)v.

If y = x, then the distribution of y will not change in the future, whereas if y �= x,
then the distribution of y must change in the future. Hence, we must have x = y at
stationarity and any stationary distribution of the spacey random surfer must be a
solution of the multilinear PageRank problem.

4.2. Sufficient conditions for uniqueness. In this section, we provide a suf-
ficient condition for the multilinear PageRank vector to be unique. Our original
conjecture was that this vector would be unique when α < 1, which mirrors the case
of the standard and higher-order PageRank vectors; however, we have already seen
an example where this was false. Throughout this section, we shall derive and prove
the following result.

Theorem 4.3. Let P be an order-m stochastic tensor and v be a nonnegative
vector. Then the multilinear PageRank equation

x = αPx(m−1) + (1− α)v

has a unique solution when α < 1
m−1 .

To prove this statement, we first prove a useful lemma about the norm of the
difference of the Kronecker products between two stochastic vectors with respect to
the difference of each part. We suspect this result is known but were unable to find
an existing reference.
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Lemma 4.4. Let a,b, c, and d be stochastic vectors where a and c have the same
size. The 1-norm of the difference of their Kronecker products satisfies the following
inequality:

‖a⊗ b− c⊗ d‖1 ≤ ‖a− c‖1 + ‖b− d‖1.
Proof. This proof is purely algebraic and begins by observing

a⊗ b− c⊗ d =
1

2
(a− c)⊗ (b+ d) +

1

2
(a+ c)⊗ (b− d).

If we separate the bound into pieces we must bound terms such as ‖(a− c)⊗ (b+ d)‖1.
But by using the stochastic property of the vectors, this term equals

∑
ij(bj+dj)|ai−

ci| = 2‖a− c‖1.
This result is essentially tight. Let us consider two stochastic vectors of two

dimensions, x = [x1, 1− x1]
T and y = [y1, 1− y1]

T , where x1 �= y1. Then,

‖x⊗ x− y ⊗ y‖1
‖x− y‖1

=
1

2
|x1 + y1|+ |1− (x1 + y1)|+ 1

2
|2− (x1 + y1)|.

The ratio of ‖x⊗ x− y ⊗ y‖1/‖x− y‖1 approaches 2 as x1+y1 → 0 or x1+y1 →
2. However, this bound cannot be achieved.

The conclusion of Lemma 4.4 can be easily extended to the case where there are
multiple Kronecker products between vectors.

Lemma 4.5. For stochastic vectors x1, . . . ,xm and y1, . . . ,ym where the size of
xi is the same as the size of yi, then

‖x1 ⊗ · · · ⊗ xm − y1 ⊗ · · · ⊗ ym‖1 ≤
∑
i

‖xi − yi‖1.

Proof. Let us consider the case of m = 3. Let a = x1 ⊗ x2, c = y1 ⊗ y2, b = x3,
and d = y3. Then

‖x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖1 = ‖a⊗ b− c⊗ d‖1 ≤ ‖a− c‖1 + ‖x3 − y3‖1
by using Lemma 4.4. But by recurring on a− c, we complete the proof for m = 3. It
is straightforward to apply this argument inductively for m > 3.

This result makes it easy to show uniqueness of the multilinear PageRank vectors.
Lemma 4.6. The multilinear PageRank equation has a unique solution when

α < 1/2 for third-order tensors.
Proof. Assume there are two distinct solutions to the multilinear PageRank equa-

tion,

x = αR(x⊗ x) + (1− α)v,

y = αR(y ⊗ y) + (1− α)v,

x− y = αR(x⊗ x− y ⊗ y).

We simply apply Lemma 4.4,

‖x− y‖1 = ‖αR(x⊗ x− y ⊗ y)‖1 ≤ 2α‖R‖1‖x− y‖1 < ‖x− y‖1,
which is a contradiction (recall that R is stochastic). Thus, the multilinear PageRank
equation has the unique solution when α < 1/2.

The proof of the general result in Theorem 4.3 is identical, except that it uses the
general bound Lemma 4.5 on the order-m problem.
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4.3. Uniqueness via Li and Ng’s results. Li and Ng’s recent paper (2013)
tackled the same uniqueness question for the general problem:

Pxm−1 = x.

We can also write our problem in this form as in (4.3) and apply their theory. In
the case of a third-order problem, or m = 3, they define a quantity to determine
uniqueness:

β = min
S⊂〈n〉

{
min
k∈〈n〉

(
min
j∈S

∑
i∈S̄

Pijk +min
j∈S̄

∑
i∈S

Pijk

)
+ min

j∈〈n〉

(
min
k∈S

∑
i∈S̄

Pijk +min
k∈S̄

∑
i∈S

Pijk

)}
.

For any tensor where β > 1, the vector x that solves

Px2 = x

is unique. In Appendix A, we show that β > 1 is a stronger condition than α < 1/2.
We defer this derivation to the appendix as it is slightly tedious and does not result
in any new insight into the problem.

4.4. PageRank and higher-order PageRank. We conclude this section by es-
tablishing some relationships between multilinear PageRank, higher-order PageRank,
and PageRank for a special tensor. In the case when there is no higher-order structure
present, then the multilinear PageRank, higher-order PageRank, and PageRank are
all equivalent. The precise condition is where R = eT ⊗ Q for a stochastic matrix
Q, which models a higher-order random surfer with behavior that is independent of
the last state. Thus, we’d expect that none of our higher-order modifications would
change the properties of the stationary distribution.

Proposition 4.7. Consider a second-order multilinear PageRank problem with
a third-order stochastic tensor where the flattened matrix R = eT ⊗Q has dimension
n×n2 and where Q is an n×n column stochastic matrix. Then for all 0 < α < 1 and
stochastic vectors v, the multilinear PageRank vector is the same as the PageRank
vector of (α,Q,v). Also, the marginal distribution of the higher-order PageRank
solution matrix, Xe, is the same as well.

Proof. If R = eT ⊗ Q, then any solution of (4.2) is also the unique solution of
the standard PageRank equation:

x = α(eT ⊗Q)(x ⊗ x) + (1− α)v = αQx+ (1− α)v.

Thus, the two solutions must be the same and the multilinear PageRank problem has
a unique solution as well. Now consider the solution of the second-order PageRank
problem from (3.1):

vec(X) = [αP + (1 − α)V ] vec(X).

Note that R = (eT ⊗ I)P . Consider the marginal distribution: y = Xe = (eT ⊗
I) vec(X). The vector y must satisfy

y = (eT ⊗ I) vec(X) = (eT ⊗ I)[αP + (1 − α)V ] vec(X) = αR vec(X) + (1− α)v.

But R vec(X) = (eT ⊗Q) vec(X) = Qy.
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4.5. Fast operators from sparse data. The last detail we wish to mention is
how to build a fast operator Pxm−1 when the input tensor is highly sparse. Let Q

be the tensor that models the original sparse data, where Q has far fewer than nm−1

nonzeros and cannot be stochastic. Nevertheless, suppose that Q has the following
property:

Q(i, j, . . . , k) ≥ 0 and
∑
i

Q(i, j, . . . , k) ≤ 1 for all j, . . . , k.

This could easily be imposed on a set of nonnegative data in time and memory pro-
portional to the nonzeros of Q if that were not originally true. To create a fast
operator for a fully stochastic problem, we generalize the idea behind the dangling
indicator correction of PageRank. (The following derivation is entirely self-contained,
but the genesis of the idea is identical to the dangling correction in PageRank prob-
lems (Boldi et al., 2007). Let S be the flattening of Q along the first index. Let

dT = eT − eTS ≥ 0, and let u be a stochastic vector that determines what the model
should do on a dangling case. Then

R = S + udT

is a column stochastic matrix, which we interpret as the flattening of P along the first
index. If x is a stochastic vector, then we can evaluate

Rx = Sx︸︷︷︸
z

+u(eTx− eTSx) = z+ (1− eT z)u,

which only involves work proportional to the nonzeros of S or the nonzeros of Q.
Thus, given any sparse tensor data, we can create a fully stochastic model.

5. Algorithms for multilinear PageRank. At this point, we begin our dis-
cussion of algorithms to compute the multilinear PageRank vector. In the following
section, we investigate five different methods to compute it. The methods are all
inspired by the fixed-point nature of the multilinear PageRank solution. They are

1. a fixed-point iteration, as in the power method and the Richardson method;
2. a shifted fixed-point iteration, as in SS-HOPM (Kolda and Mayo, 2011);
3. a nonlinear inner-outer iteration, akin to Gleich et al. (2010);
4. an inverse iteration, as in the inverse power method; and
5. a Newton iteration.

We will show that the first four of them converge in the case that α < 1/(m−1) for an
order-m tensor. For Newton, we show it converges quadratically fast for a third-order
tensor when α < 1/2. We also illustrate a few empirical advantages of each method.

The test problems. Throughout the following section, the following two problems
help illustrate the methods:

R1 =

⎡
⎣ 1/3 1/3 1/3 1/3 0 0 0 0 0

1/3 1/3 1/3 1/3 0 1/2 1 0 1
1/3 1/3 1/3 1/3 1 1/2 0 1 0

⎤
⎦ ,

R2 =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2
0 0 0 0 0 1 0 1 0 1/2 0 0 0 1/2 0 0
0 0 0 0 0 0 1 0 0 1/2 1 1 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 1 1/2 1 1/2

⎤
⎥⎥⎦
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with v = e/n. The parameter α will vary through our experiments, but we are most
interested in the regime where α > 1/2 to understand how the algorithms behave
outside of the region where we can prove they converge. We derived these problems
by using exhaustive and randomized searches over the space of 2×2×2, 3×3×3, and
4× 4× 4 binary-valued tensors, which we then normalized to be stochastic. Problems
R1 and R2 were made from the database of problems we consider from the next
section (section 6).

The residual of a problem and a potential solution x is the 1-norm:

(5.1) residual = ‖αPxm−1 + (1− α)v − x‖1.

We seek methods that cause the residual to drop below 10−8. For all the examples
in this section, we ran the method out to 10,000 iterations to ensure there was no
delayed convergence, although we show only 1000 iterations.

5.1. The fixed-point iteration. The multilinear PageRank problem seeks a
fixed-point of the following nonlinear map:

f(x) = αPxm−1 + (1− α)v.

We first show convergence of the iteration implied by this map in the case that α <
1/(m− 1).

Theorem 5.1. Let P be an order-m stochastic tensor, let v and x0 be stochastic
vectors, and let α < 1/(m− 1). The fixed-point iteration

xk+1 = αPxm−1
k + (1 − α)v

will converge to the unique solution x of the multilinear PageRank problem (4.2) and
also

‖xk − x‖1 ≤ [α(m− 1)]k‖x0 − x‖1 ≤ 2[α(m− 1)]k.

Proof. Note first that this problem has a unique solution x by Theorem 4.3 and
also that xk remains stochastic for all iterations. This result is then, essentially, an
implication of Lemma 4.5. Let R be the flattening of P along the first index. Then
using that lemma,

‖y− xk+1‖1 = ‖αR(y ⊗ · · · ⊗ y − xk ⊗ · · · ⊗ xk)‖1 ≤ α(m− 1)‖y− xk‖1.

Thus, we have established a contraction.

Li and Ng treat the same iteration in their paper and they show a more general
convergence result that implies our theorem, thus providing a more refined understand-
ing of the convergence of this iteration. However, their result needs a difficult-to-check
criteria. In earlier work by Rabinovich, Sinclair, and Wigderson (1992), they show
that the fixed-point iteration will always converge when a certain symmetry property
holds; however, they do not have a rate of convergence. Nevertheless, it is still easy to
find PageRank problems that will not converge with this iteration. Figure 2 shows the
result of using this method on R1 with α = 0.95 and α = 0.96. The former converges
nicely and the later does not.
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Fig. 2. At left, the components of the iterates of the fixed-point iteration for R1 with α = 0.95
show that it converges to a solution. (See the inset residual in the upper right.) At right, the result
of the fixed-point iteration with α = 0.96 illustrates a case that does not converge.

5.2. The shifted fixed-point iteration. Kolda and Mayo (2011) noticed a
similar phenomenon for the convergence of the symmetric higher-order power method
and proposed the shifted symmetric higher-order power method (SS-HOPM) to ad-
dress these types of oscillations. They were able to show that their iteration always
converges monotonically for an appropriate shift value. For the multilinear PageRank
problem, we study the iteration given by the equivalent fixed-point:

(1 + γ)x =
[
αPxm−1 + (1 − α)v

]
+ γx.

The resulting iteration is what we term the shifted fixed-point iteration

xk+1 =
α

1 + γ
Pxm−1

k +
1− α

1 + γ
v +

γ

1 + γ
xk.

It shares the property that an initial stochastic approximation x0 will remain stochas-
tic throughout.

Theorem 5.2. Let P be an order-m stochastic tensor, let v and x0 be stochastic
vectors, and let α < 1/(m− 1). The shifted fixed-point iteration

(5.2) xk+1 =
α

1 + γ
Pxm−1

k +
1− α

1 + γ
v +

γ

1 + γ
xk

will converge to the unique solution x of the multilinear PageRank problem (4.2) and
also

‖xk − x‖1 ≤
(
α(m− 1) + γ

1 + γ

)k

‖x0 − x‖1 ≤ 2

(
α(m− 1) + γ

1 + γ

)k

.

The proof of this convergence is, in essence, identical to the previous case and we
omit it for brevity.

This result also suggests that choosing γ = 0 is optimal and we should not shift
the iteration at all. That is, we should run the fixed-point iteration. This analysis,
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Fig. 3. When we use a shift γ = 1/2, then at left, the iterates of the shifted iteration for
R1 with α = 0.96 shows that it quickly converges to a solution, whereas this same problem did not
converge with the fixed-point method. At right, the result of the shifted iteration on R2 with α = 0.97
again shows a case that does not converge.

however, is misleading, as illustrated in Figure 3. There, we show the iterates from
solving R1 with α = 0.96, which did not converge with the fixed-point iteration but
converges nicely with γ = 1/2. However, γ < (m−2)/2 will not guarantee convergence
and the same figure shows that R2 with α = 0.97 will not converge. We now present
a necessary analysis that shows this method may not converge if γ < (m− 2)/2 when
α > 1/(m− 1).

On the necessity of shifting. To derive this result, we shall restate the multilinear
PageRank problem as the limit point of an ODE. There are other ways to derive this
result as well, but this one is familiar and relatively straightforward. Consider the
ODE

(5.3)
dx

dt
= αPxm−1 + (1− α)v − x.

A forward Euler discretization yields the iteration

xk+1 = αhPxm−1
k + (1− α)hv + (1− h)xk,

which is identical to the shifted iteration (5.2) with h = 1
1+γ . To determine if forward

Euler converges, we need to study the Jacobian of the ODE. Let R be the flattening
of P along the first index; then the Jacobian of the ODE (5.3) is

J(x) = αR(I ⊗ x⊗ · · · ⊗ x+ x⊗ I ⊗ x⊗ · · · ⊗ x+ x⊗ · · · ⊗ x⊗ I)− I.

A necessary condition for the forward Euler method to converge is that it is absolutely
stable. In this case, we need |1 − hρ(J)| ≤ 1, where ρ is the spectral radius of
the Jacobian. For all stochastic vectors x generated by iterations of the algorithm,
ρ(J(x)) ≤ (m− 1)α+ 1 ≤ m. Thus, h ≤ 2/m is necessary for a general convergence
result when α > 1/(m − 1). This, in turn, implies that γ ≥ (m − 2)/2. In the case
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that α < 1/(m − 1), then the Jacobian already has eigenvalues within the required
bounds and no shift is necessary.

Remark 5.3. Based on this analysis, we always recommend the shifted iteration
with γ ≥ (m− 2)/2 for any problem with α > 1/(m− 1).

5.3. An inner-outer iteration. We now develop a nonlinear iteration scheme
that uses multilinear PageRank, in the convergent regime, as a subroutine. To derive
this method, we use the relationship between multilinear PageRank and the multilin-
ear Markov chain formulation discussed in section 2.4. Let R̄ = αR + (1 − α)veT ,
then note that the Markov chain form of the problem is

R̄(x⊗ · · · ⊗ x︸ ︷︷ ︸
m − 1 terms

) = x ⇔ [αR+ (1 − α)veT ](x⊗ · · · ⊗ x︸ ︷︷ ︸
m − 1 terms

) = x.

Equivalently, we have

α

m− 1
R̄(x⊗ · · · ⊗ x︸ ︷︷ ︸

m − 1 terms

) +

(
1− α

m− 1

)
x = x.

From here, the nonlinear iteration emerges:

(5.4) xk+1 =
α

m− 1
R̄(xk+1 ⊗ · · · ⊗ xk+1︸ ︷︷ ︸

m − 1 terms

) +

(
1− α

m− 1

)
xk.

Each iteration involves solving a multilinear PageRank problem with R̄, α/(m − 1),
and xk. Because α < 1, then α/(m − 1) < 1/(m − 1) and the solution of these
subproblems is unique, and thus the method is well-defined. Not surprisingly, this
method also converges when α < 1/(m− 1).

Theorem 5.4. Let P be an order-m stochastic tensor, let v and x0 be stochastic
vectors, and let α < 1/(m− 1). Let R be the flattening of P along the first index and
let R̄ = αR + (1− α)veT . The inner-outer multilinear PageRank iteration

xk+1 =
α

m− 1
R̄(xk+1 ⊗ · · · ⊗ xk+1︸ ︷︷ ︸

m − 1 terms

) +

(
1− α

m− 1

)
xk

converges to the unique solution x of the multilinear PageRank problem and also

‖xk − x‖1 ≤
(
1− α/(m− 1)

1− α2

)k

‖x0 − x‖1 ≤ 2

(
1− α/(m− 1)

1− α2

)k

.

Proof. Recall that this is the regime of α when the solution is unique. Note that

xk+1 − x =
α

m− 1
R̄(xk+1 ⊗ · · · ⊗ xk+1︸ ︷︷ ︸

m − 1 terms

−x⊗ · · · ⊗ x︸ ︷︷ ︸
m − 1 terms

) +

(
1− α

m− 1

)
(xk − x)

=
α2

m− 1
R(xk+1 ⊗ · · · ⊗ xk+1︸ ︷︷ ︸

m − 1 terms

−x⊗ · · · ⊗ x︸ ︷︷ ︸
m − 1 terms

) +

(
1− α

m− 1

)
(xk − x).

By using Lemma 4.5, we can bound the norm of the difference of the m − 1 term
Kronecker products by (m− 1)‖xk+1 − x‖1. Thus,

‖xk+1 − x‖1 ≤ α2‖xk+1 − x‖1 +
(
1− α

m− 1

)
‖xk − x‖1,
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Fig. 4. At left, the iterates of the inner-outer iteration for R2 with α = 0.97 show that it
converges to a solution, whereas this same problem did not converge with the shifted method. At
right, the result of the shifted iteration on R2 with α = 0.90 again shows an example that doesn’t
converge.

and the scheme converges linearly with rate 1−α/(m−1)
1−α2 < 1 when α < 1/(m−1).

In comparison with the shifted method, each iteration of the inner-outer method
is far more expensive and involves solving a multilinear PageRank method. However,
if P is available only through a fast operator, this may be the only method possible.
In Figure 4, we show that the inner-outer method converges in the case that the
shifted method failed to converge. Increasing α to 0.99, however, now generates a
problem where the inner-outer method will not converge.

5.4. An inverse iteration. Another algorithm we consider is given by our in-
terpretation of the multilinear PageRank solution as a stochastic process. Observe,
for the second-order case,

αR(x⊗ x) = α
2R(x⊗ I + I ⊗ x) = α [ 12R(x ⊗ I) + 1

2R(I ⊗ x)].

Both matrices

R(x⊗ I) and R(I ⊗ x)

are stochastic. Let S(x) = 1
2R(x ⊗ I) + 1

2R(I ⊗ x) be the stochastic sum of these
two matrices. Then the multilinear PageRank vector satisfies

x = αS(x)x+ (1 − α)v.

This equation has a subtle interpretation. The multilinear PageRank vector is the
PageRank vector of a solution-dependent Markov process. The stochastic process
presented in section 4.1 shows this in a slightly different manner. The iteration that
arises is a simple fixed-point idea using this interpretation:

xk+1 = αS(xk)xk+1 + (1− α)v.

Thus, at each step, we solve a PageRank problem given the current iterate to produce
the subsequent vector. For this iteration, we could then leverage a fast PageRank
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solver if there is a way of computing S(xk) effectively or S(xk)x effectively. The
method for a general problem is the same, except for the definition of S. In general,
let
(5.5)
S(x) = 1

m−1R(I ⊗ xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
m − 2 terms

+xk ⊗ I ⊗ xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
m − 3 terms

+ · · ·+ xk ⊗ · · · ⊗ xk︸ ︷︷ ︸
m − 2 terms

⊗I).

This iteration is guaranteed to converge in the unique solution regime.
Theorem 5.5. Let P be an order-m stochastic tensor, let v and x0 be stochastic

vectors, and let α < 1/(m − 1). Let S(xk) be an n × n stochastic matrix defined
via (5.5). The inverse multilinear PageRank iteration

xk+1 = αS(xk)xk+1 + (1− α)v

converges to the unique solution x of the multilinear PageRank problem and also

‖xk − x‖1 ≤
(
(m− 2)α

1− α

)k

‖x0 − x‖1 ≤ 2

(
(m− 2)α

1− α

)k

.

Proof. We complete the proof using the terms involved in the fourth-order case
(m = 4) because it simplifies the indexing tremendously, although the terms in our
proof will be entirely general. Consider the error at the (k + 1)th iteration:

xk+1 − x =
α

m− 1
R[(I ⊗ xk ⊗ xk + xk ⊗ I ⊗ xk + xk ⊗ xk ⊗ I)xk+1

− (I ⊗ x⊗ x+ x⊗ I ⊗ x+ x⊗ x⊗ I)x]

=
α

m− 1
R[(xk+1 ⊗ xk ⊗ xk + xk ⊗ xk+1 ⊗ xk + xk ⊗ xk ⊗ xk+1)

− (x⊗ x⊗ x+ x⊗ x⊗ x+ x⊗ x⊗ x)].

At this point, it suffices to prove that terms of the form ‖xk+1 ⊗ xk ⊗ xk − x⊗ x⊗ x‖1
are bounded by (m− 1)‖xk+1 − x‖1+(m− 1)(m− 2)‖xk − x‖1. Showing this for one
term also suffices because all these terms are equivalent up to a permutation.

We continue by Lemma 4.5, which yields

‖xk+1 ⊗ xk ⊗ xk − x⊗ x⊗ x‖1 ≤ ‖xk+1 − x‖1 + 2‖xk − x‖1
in the third-order case and ‖xk+1 − x‖1 + (m − 2)‖xk − x‖1 in general. Since there
are m− 1 of these terms, we are done.

In comparison to the inner-outer iteration, this method requires detailed knowl-
edge of the operator P in order to form S(xk) or even matrix-vector products S(xk)z.
In some applications this may be easy. In Figure 5, we illustrate the convergence of
the inverse iteration on the problems that the inner-outer method’s illustration used.
The convergence pattern is the same.

5.5. Newton’s method. Finally, consider Newton’s method for solving the non-
linear equation

f (x) = αR(x ⊗ x) + (1− α)v − x = 0.

The Jacobian of this operator is

J(x) = αR(x⊗ I + I ⊗ x)− I.
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Fig. 5. At left, the iterates from the inverse iteration to solve problem R2 with α = 0.97, and
at right, the iterates to solve problem R2 with α = 0.99. Both show similar convergence behavior as
to the inner-outer method.

We now prove the following theorem about the convergence of Newton’s method.
Theorem 5.6. Let P be a third-order stochastic tensor, let v be a stochastic

vector, and let α < 1/2. Let R be the flattening of P along the first index. Let

f (x) = αR(x ⊗ x) + (1− α)v − x = 0.

Newton’s method to solve f(x) = 0, and hence compute the unique multilinear Page-
Rank vector, is the iteration

(5.6) [I − αR(xk ⊗ I + I ⊗ xk)]pk = f(xk), xk+1 = xk + pk, x0 = 0.

It produces a unique sequence of iterates where

f (xk) ≥ 0, eT f (xk) =
α(eT f(xk−1))

2

(1− 2α)2 + 4αeT f(xk−1)
≤ α(1 − α)2

1

4k−1
, k ≥ 1,

that also converges quadratically in the k → ∞ limit.
This result shows that Newton’s method always converges quadratically fast when

solving multilinear PageRank vectors inside the unique regime.
Proof. We outline the following sequence of facts and lemmas we provide to

compute the result. The key idea is to use the result that second-order multilinear
PageRank is a second degree polynomial, and hence we can use Taylor’s theorem to
derive an exact prediction of the function value at successive iterations. We first prove
this key fact. Subsequent steps of the proof establish that the sequence of iterates
is unique and well-defined (that is, that the Jacobian is always nonsingular). This
involves showing, additionally, that xk ≥ 0, eTxk ≤ 1, and f (xk) ≥ 0. Let fk = eT f ,
since f (xk) ≥ 0, showing that fk → 0 suffices to show convergence. Finally, we derive
a recurrence:

(5.7) fk+1 =
αf2

k

(1 − 2α)2 + 4αfk
.
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Key fact. Let pk = xk+1 − xk. If the Jacobian J(xk) is nonsingular in the kth
iteration, then f(xk+1) = αR(pk ⊗ pk). To prove this, we use an exact version of
Taylor’s theorem around the point xk:

f (xk + p) = f(xk) + J(xk)p+ 1
2Tp2,

where Tp2 = αR(I ⊗ I + I ⊗ I)(p ⊗ p) is independent of the current point. Note
also that Newton’s method chooses p such that f(xk) + J(xk)p = 0. Then

f(xk+1) = f (xk + pk) = αR(pk ⊗ pk).

Well-defined sequence. We now show that J(xk) is nonsingular for all xk, and
hence, the Newton iteration is well-defined. It is easy to do so if we establish that

(5.8) f(xk) ≥ 0,xk ≥ 0 and zk = eTxk ≤ 1

also hold at each iteration. Clearly, these properties hold for the initial iteration where
f(x0) = (1−α)v. Thus, we proceed inductively. Note that if xk ≥ 0 and zk ≤ 1, then
the Jacobian is nonsingular because −J(xk) = [I −αR(xk ⊗ I + I ⊗xk)] is a strictly
diagonally dominant matrix, M -matrix when α < 1/2. (In fact, both R(xk ⊗ I) and
R(I ⊗ xk) are nonnegative matrices with column norms equal to zk = eTxk.) Thus,
xk+1 is well-defined and it remains to show that f (xk+1) ≥ 0, xk+1 ≥ 0, and zk+1 ≤ 1.
Now, by the definition of Newton’s method,

xk+1 = xk − J(xk)
−1f(xk),

but −J is an M -matrix, and so xk+1 ≥ 0. This also shows that pk = xk+1 − xk ≥ 0,
from which we can use our key fact to derive that f(xk+1) ≥ 0. What remains to
show is that zk+1 ≤ 1. By taking summations on both sides of (5.6), we have

(1− 2αzk)(zk+1 − zk) = αz2k + (1− α)− zk.

A quick, but omitted, calculation confirms that zk+1 > 1 implies zk > 1. Thus, we
completed our inductive conditions for (5.8).

Recurrence. We now show that (5.7) holds. First, observe that

fk = α(eTpk)
2, eTpk =

fk
1− 2αzk

, αz2k + (1− α) − zk − fk = 0.

We now solve for zk in terms of fk. This involves picking a root for the quadratic
equation. Since zk ≤ 1, this makes the choice the negative root in

zk =
1−√(1− 2α)2 + 4αfk

2α
≤ 1.

Assembling these pieces yields (5.7).
Convergence. We have an easy result that fk+1 ≤ 1

4fk by ignoring the term
(1 − 2α)2 in the denominator. Also, by direct evaluation, f1 = α(1 − α)2. Thus,

fk ≤ 1

4k−1
f1 =

1

4k−1
α(1− α)2,

which is one side of the convergence rate. The sequence for fk also converges quadrat-
ically in the limit because limk→∞

fk+1

f2
k

= α
(1−2α)2 .
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Fig. 6. For problem R2 with α = 0.99, the Newton iteration from Theorem 5.6 (left figure)
converges to a nonstochastic solution—note the scale of the solution axis. The always-stochastic
iteration (5.9) (right figure) converges for this problem. Thus, we recommend the iteration (5.9)
when α > 1

m−1
.

A practical, always-stochastic Newton iteration. The Newton iteration from The-
orem 5.6 begins as x0 = 0 and, when α < 1/2, gradually grows the solution until it
becomes stochastic and attains optimality. For problems when α > 1/2, however, this
iteration often converges to a fixed-point where x is not stochastic. (In fact, it always
did this in our brief investigations.) To make our codes practical for problems where
α > 1/2, then, we enforce an explicit stochastic normalization after each Newton step:

(5.9) [I−αR(xk⊗I+I⊗xk)]pk = f(xk), xk+1 = proj(xk+pk), x0 = (1−α)v,

where

proj(x) = max(x, 0)/eT max(x, 0)

is a projection operator onto the probability simplex that sets negative elements to
zero and then normalizes those left to sum to one. We found this iteration superior to
a few other choices, including using a proximal point projection operator to produce
always stochastic iterates (Parikh and Boyd, 2014, section 6.2.5). We illustrate an
example of the difference in Figure 6, where the always-stochastic iteration solves the
problem and the iteration without this projection converges to a nonstochastic fixed-
point. Note that, like a general instance of Newton’s method, the system [I−αR(xk⊗
I + I ⊗ xk)] may be singular. We never ran into such a case in our experiments and
in our study. In the regime when α < 1/2, then the Jacobian is always nonsingular.
Also, in this regime, we observed that stochastic iterates stay stochastic. Analyzing
the convergence of a stochastic sequence of iterates when α < 1/2 is thus an interesting
future direction.

We further illustrate the behavior of Newton’s method on R2 with α = 0.97 and
R2 with α = 0.99 in Figure 7. The second of these problems did not converge for
either the inner-outer or the inverse iteration. Newton’s method solves it in just a



1530 DAVID F. GLEICH, LEK-HENG LIM, AND YONGYANG YU

1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Iteration

S
ol

ut
io

n

 

 
1
2
3
4

0 5
10

−10

10
−5

10
0

Iteration

R
es

id
ua

l

1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Iteration

S
ol

ut
io

n
 

 
1
2
3
4

0 5
10

−10

10
−5

10
0

Iteration

R
es

id
ua

l

Fig. 7. At left, the iterates of Newton’s method to solve problem R2 with α = 0.97, and at right,
the iterates to solve problem R2 with α = 0.99. Both sequences converge unlike the inner-outer and
inverse iterations.

few iterations. In comparison to both the inner-outer and inverse iterations, however,
Newton’s method requires even more direct access to P in order to solve for the steps
with the Jacobian.

6. Experimental results. To evaluate these algorithms, we create a database
of problematic tensors. We then use this database to address two questions:

1. What value of the shift is most reliable?
2. Which method has the most reliable convergence?

In terms of reliability, we wish for the method to generate a residual smaller than
10−8 before reaching the maximum iteration count where the residual for a potential
solution is given by (5.1). In many of the experiments, we run the methods for between
10,000 to 100,000 iterations. If we do not see convergence in this period, we deem a
particular trial a failure. The value of v is always e/n but α will vary between our
trials. Before describing these results, we begin by discussing how we created the test
problems.

6.1. Problems. We used exhaustive enumeration to identify 2× 2 × 2 and 3×
3× 3 binary tensors, which we then normalized to stochastic tensors, which exhibited
convergence problems with the fixed-point or shifted methods. We also randomly
sampled many 4× 4× 4 binary problems and saved those that showed slow or erratic
convergence for these same algorithms. We used α = 0.99 and v = e/n for these
studies. The 6 × 6 × 6 problems were constructed randomly in an attempt to be
adversarial. Tensors with strong “directionality” seemed to arise as interesting cases
in much of our theoretical study (this is not presented here). By this, we mean, for
instance, tensors where a single state has many incoming links. We created a random
procedure that generates problems where this is true (the exact method is in the
online supplement) and used this to generate 6 × 6 × 6 problems. In total, we have
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the following problems:

3× 3× 3, 5 problems,

4× 4× 4, 19 problems,

6× 6× 6, 5 problems.

The full list of problems is in given in Appendix B.

We used the MATLAB symbolic toolbox to compute a set of exact solutions to
these problems. These 6× 6 × 6 problems often had multiple solutions, whereas the
smaller problems only had a single solution (for the values of α we considered). While
it is possible there are solutions missed by this tool, prior research found symbolic
computation a reliable means of solving these polynomial systems of equations (Kolda
and Mayo, 2011).

6.2. Shifted iteration. We begin our study by looking at a problem where the
necessary shift suggested by the ODE theory (γ = 1/2 for third-order data) does
not result in convergence. We are interested in whether varying the shift will alter
the convergence behavior. This is indeed the case. For the problem R4,11 from the
appendix with α = 0.99, we show the convergence of the residual as the shift γ
varies in Figure 8. When γ = 0.5, the iteration does not converge. There is a point
somewhere between γ = 0.554 and γ = 0.5545 where the iteration begins to converge.
When we set γ = 1, the iteration converged rapidly.

In the next experiment, we wished to understand how the reliability of the method
depended on the shift γ. In Table 1, we vary α and the shift γ and look at how many of
the 29 test problems the shifted method can solve within 10,000 iterations. Recall that
a method solves a problem if it pushes the residual below 10−8 within the iteration
bound. The results from that table show that γ = 1 or γ = 2 results in the most
reliable method. When γ = 10, then the method was less reliable. This is likely
due to the shift delaying convergence for too long. Note that we chose many of the
problems based on the failure of the shifted method with γ = 0 or γ = 1/2 and so the
poor performance of these choices may not reflect their true reliability. Nevertheless,
based on the results of this table, we recommend a shift of γ = 1 for a third-order
problem, or a shift of γ = m− 2 for a problem with an order-m tensor.

6.3. Solver reliability. In our final study, we utilize each method with the
following default parameters:

F fixed-point 10,000 maximum iterations, x0 = v
S shifted 10,000 maximum iterations, γ = 1, x0 = v
IO inner-outer 1,000 outer iterations, internal tolerance ε, x0 = v
Inv inverse 1,000 iterations, x0 = v
N Newton 1,000 iterations, projection step, x0 = (1− α)v

We also evaluate each method with 10 times the default number of iterations.

The results of the evaluation are shown in Table 2 as α varies from 0.7 to 0.99.
The fixed-point method has the worst performance when α is large. Curiously, when
α = 0.99 the shifted method outperforms the inverse iteration, but when α = 0.95
the inverse iteration outperforms the shifted iteration. This implies that the behavior
and reliability of the methods are not monotonic in α. While this fact is not overly
surprising, it is pleasing to see a concrete example that might suggest some tweaks
to the methods to improve their reliability. Overall, the inner-outer and Newton’s
methods have the most reliable convergence on these difficult problems.
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Fig. 8. For the problem R4,11 with α = 0.99 and v = e/n, the shifted method will not converge
unless γ is slightly larger than 0.554. As γ becomes larger, the convergence rate increases.

Table 1

Each row of this table reports the number of problems successfully solved by the shifted iteration
as the shift varies from 0 to 10. The values are reported for each value of α considered, as well as
broken down into the different problem sizes considered.

α n Shifts γ
0 1/4 1/2 3/4 1 2 10

0.70 3 5 5 5 5 5 5 5
4 19 19 19 19 19 19 19
6 5 5 5 5 5 5 5

29 29 29 29 29 29 29

0.85 3 5 5 5 5 5 5 5
4 19 19 19 19 19 19 19
6 5 5 5 5 5 5 5

29 29 29 29 29 29 29

0.90 3 5 5 5 5 5 5 5
4 18 19 19 19 19 19 19
6 5 5 5 5 5 5 5

28 29 29 29 29 29 29

0.95 3 5 5 5 5 5 5 5
4 7 11 13 13 16 19 18
6 5 5 5 5 5 5 5

17 21 23 23 26 29 28

0.99 3 4 5 5 5 5 5 5
4 0 1 1 2 2 2 2
6 1 1 1 2 2 2 1

5 7 7 9 9 9 8
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Table 2

Each row of this table reports the number of problems successfully solved by the various iterative
methods in two cases: with their default parameters and with 10 times the standard number of
iterations. The values are reported for each value of α considered, as well as broken down into the
different problem sizes considered. The columns are F for the fixed-point, S for the shifted method,
IO for the inner-outer, Inv for the inverse iteration, and N for Newton’s method.

α n Method (defaults) Method (Extra iteration)
F S IO Inv N F S IO Inv N

0.70 3 5 5 5 5 5 5 5 5 5 5
4 19 19 19 19 19 19 19 19 19 19
6 5 5 5 5 5 5 5 5 5 5

29 29 29 29 29 29 29 29 29 29

0.85 3 5 5 5 5 5 5 5 5 5 5
4 19 19 19 19 19 19 19 19 19 19
6 5 5 5 5 5 5 5 5 5 5

29 29 29 29 29 29 29 29 29 29

0.90 3 5 5 5 5 5 5 5 5 5 5
4 18 19 19 19 19 18 19 19 19 19
6 5 5 5 5 5 5 5 5 5 5

28 29 29 29 29 28 29 29 29 29

0.95 3 5 5 5 5 5 5 5 5 5 5
4 7 16 18 19 19 8 16 19 19 19
6 5 5 5 5 5 5 5 5 5 5

17 26 28 29 29 18 26 29 29 29

0.99 3 4 5 5 5 5 4 5 5 5 5
4 0 2 15 1 19 0 2 17 1 19
6 1 2 3 1 4 2 3 4 3 4

5 9 23 7 28 6 10 26 9 28

Newton’s method, in fact, solves all but one instance: R6,3 with α = 0.99. We
explore this problem in slightly more depth in Figure 9. This problem only has a
single unique solution (based on our symbolic computation). However, none of the
iterations will find it using the default settings—all the methods are attracted to a
point with a small residual and an indefinite Jacobian. We were able to find the
true solution by using Newton’s method with random starting points. It seems that
the iterates need to approach the solution from a rather precise trajectory in order
to overcome an indefinite region. This problem should be a useful case for future
algorithmic studies on the problem.

6.4. A four-mode example. We exhaustively enumerated stochastic normal-
izations of binary 2 × 2 × 2 × 2 and 2 × 2 × 2 × 2 × 2 problems and found that
the fixed-point method converged in all instances. (There are only about 4 billion
such objects, so this takes only a few days on a modern computer.) We then began
exhaustively enumerating 3 × 3 × 3 × 3 problems that are stochastically normalized
and have the dangling adjustment using the uniform vector. Among the first few bil-
lion of these, the fixed-point method always converges, although it does so slowly in
some cases. We list an example in Appendix B.4 that has 15 nonzeros and show the
convergence with α = 0.99 in Figure 10. The convergence is smooth but extremely
slow with a rate of approximately 0.9998. By way of comparsion, this is approximately
α1/42 = 0.991/42 ≈ 0.9998. If we ran the power method on the associated higher-order
Markov chain, the convergence rate would be α1/3.
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The point The eigenvalues The true solution
0.199907259533067 0.980000000000000 0.043820721946272
0.006619352098700 0.000064771773360 0.002224192630620
0.116429656827957 -1.786544142144891 0.009256490884022
0.223220491129316 -0.575965838505486 0.819168263512464
0.079958855790239 -0.575965838505486 0.031217440669761
0.373864384620721 -1.438690261635567 0.094312890356862

The Jacobian
-0.9712 0.2246 0.3496 0.1944 0.3395 0.7435

0 -0.7299 0.0131 0 0.0824 0
0.4781 0.1851 -0.9505 0 0.4621 0.2408
0.0288 0.1851 0.0495 0.1822 0 0.4453

0 0.4192 0.3701 0.0857 -0.5939 0.1581
1.4443 0.6960 1.1482 0.5176 0.6899 -0.6077

Fig. 9. Newton’s method on the nonconvergent case of R6,3 with α = 0.99. The method
repeatedly drops to a small residual before moving away from the solution. This happens because when
the residual becomes small, then the Jacobian acquires a nontrivial positive eigenvalue as exemplified
by the point with the red-circled residual. We show the Jacobian and eigenvalues at this point.
It appears to be a pseudosolution that attracts all the algorithms. Using random starting points,
Newton’s method will sometimes generate the true solution, which is far from the the attracting
point.

6.5. A large example. We conclude this section with an example using a large
tensor. The wiki-talk graph (Leskovec, Huttenlocher, and Kleinberg, 2010) provided
in the SNAP repository (https://snap.stanford.edu) is a collection of 2,394,385 editors
on Wikipedia and their relationships. We have a directed edge between user i and
user j if user i ever edited the “talk” page associated with user j. There are 5,021,410
of these directed relationships. Based on the ideas from Klymko, Gleich, and Kolda
(2014) that we later extended in Benson, Gleich, and Leskovec (2015), we consider
finding the multilinear PageRank vector of the tensor of directed 3-cycles. Let C be
an n× n× n symmetric tensor where

C(i, j, k) =

{
1, there is a directed three-cycle between nodes i, j, k,

0 otherwise.

This tensor has 15,416,112 directed three-cycles. Let S be the 1-mode unfolding of C
that has been normalized to be a substochastic matrix by scaling the columns. Let
M = ATD+ be the standard random-walk normalization of the directed adjacency
matrix. Finally, let dangling(·) be the dangling correction vector as discussed in
section 4.5. We consider using the tensor with unfolded matrix

R = β[S + v · dangling(S)] + (1− β)[M + v · dangling(M )]⊗ eT .

We can compute products R(x ⊗ x) in time proportional to the number of directed
three-cycles by using the previously described algorithm that corrects for the missing
sum of associated dangling vectors. Enumerating these cycles and computing this
product are both fast operations and take at most a few seconds for our unoptimized
code.

The number of iterations required for the fixed-point without any shift is given in
Table 3. We fixed v = e/n as the uniform stochastic vector. We found that the simple
fixed-point method always converges quickly for this problem as we vary both α and
β. As β tended toward 1, the resulting tensor becomes so sparse that the method

https://snap.stanford.edu
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Fig. 10. The convergence of the fixed-point iteration on a four-mode, three-dimensional problem
is regular but extremely slow. The convergence rate over the last 10,000 iterations was 0.9998 where
α = 0.99.

Table 3

The number of iterations required for a problem with n = 2,394,385 using the wiki-Talk dataset.
The stochastic tensor is a combination of directed three-cycles and edges of the original graph that
varies with the parameter β such that β = 1 uses only three cycles and β = 0 reduces to the traditional
PageRank case. Because of the sparsity of the three-cycle information, the iteration converges more
quickly as β → 1.

α β

0.50 0.85 0.99

0.50 22 12 6
0.85 35 15 7
0.99 42 16 7

always converges quickly. This happens because matrix R ≈ v(eT ⊗ eT ). That said,
there is additional information in these solutions that can be useful for identifying
clusters of states in the Markov chain, as we discuss in Benson, Gleich, and Leskovec
(2015).

7. Discussion. In this manuscript, we studied the higher-order PageRank prob-
lem as well as the multilinear PageRank problem. The higher-order PageRank prob-
lem behaves much like the standard PageRank problem: we always have guaranteed
uniqueness and fast convergence. The multilinear PageRank problem, in contrast,
only has uniqueness and fast convergence in a more narrow regime. Outside of that
regime, existence of a solution is guaranteed, although uniqueness is not. But note
that the multilinear PageRank problem is interesting only for massive problems. If
O(n2) memory is available, then the higher-order PageRank vector should be used
unless there is a modeling reason to choose the multilinear formulation.
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For the multilinear PageRank problem, convergence of simple iterative methods
outside of the uniqueness regime is highly dependent on the data. We created a test
set based on problems where both the fixed-point and shifted fixed-point methods
fail. On these tough problems, both the inner-outer and Newton iterations had the
best performance. This result suggests a two-phase approach to solving the problems:
first try the simple shifted method. If that does not seem to converge, then use either
a Newton or an inner-outer iteration. Our current findings are focused to the third-
order case. In our online codes, we have conducted experiments with all stochastic
normalizations of binary 2×2×2×2 (4-mode) and 2×2×2×2×2 (5-mode) problems.
This exhausive test of over 4 billion problems did not reveal any nonconvergent data.

We also briefly explored optimization-based methods to find fixed-points by minin-
ing the norm of the residual squared as well as methods to solve nonlinear equations.
Experiments with the MATLAB optimization toolbox showed that these approches
converged for all the difficult problems we found. We leave deriving the equivalent con-
vergence guarantees and exploring the experimental trade-offs to future work as this
paper is focused on simple algorithms and understanding what is and is not possible
with the multilinear PageRank problem.

Based on our theoretical results, we note that there seems to be a key transition for
all the algorithms and theory that arise at the uniqueness threshold: α < 1/(m− 1).
Curiously, the same type of bound exists for the more complicated model studied
by Li and Ng (2015) involving m-stochastic tensors and we conjecture that their
model is a special case, or closely related case, to our multilinear PageRank model.
We are currently trying to find algorithms with guaranteed convergence when α >
1/(m− 1) but have not been successful yet. We plan to explore using sum-of-squares
programming for this task in the future. Such an approach has given one of the first
algorithms with good guarantees for the tensor eigenvalue problem (Nie and Wang,
2014). In closing, however, let us note that this seems to be a largely theoretical
issue. We explored a few large-scale applications of multilinear PageRank in Benson,
Gleich, and Leskovec (2015) and never observed any issues with convergence using
the fixed-point method. It is possible that a smoothed analysis approach could be
used to make this observation formal.

Appendix A. Applying Li and Ng’s results to multilinear PageRank.
For the third-order tensor problem

Px2 = x

Li and Ng (2013) define a quantity called β to determine if the solution is unique.
(Their quantity was γ, but we use β here to avoid confusion with the shifting parameter
γ.) When β > 1, then the solution is unique, and in this section, we show that β > 1
is a stronger condition than α < 1/2. The scalar value β (0 ≤ β ≤ 4) is defined

β = min
S⊂〈n〉

{
min
k∈〈n〉

(
min
j∈S

∑
i∈S̄

Pijk +min
j∈S̄

∑
i∈S

Pijk

)
︸ ︷︷ ︸

β1

+ min
j∈〈n〉

(
min
k∈S

∑
i∈S̄

Pijk +min
k∈S̄

∑
i∈S

Pijk

)
︸ ︷︷ ︸

β2

}
,

where 〈n〉 ≡ {1, 2, . . . , n}, S ⊂ 〈n〉, and S̄ = 〈n〉 \S. Note that we divide this into two
components, β1 and β2, that both depend on the set S.

When we apply their theory to multilinear PageRank, we study the problem

P̄x2 = x, where P̄ijk = αPijk + (1− α)vi.
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The value of β is a function of P and clearly β(ωP ) = ωβ(P ), where ω is a scalar.
Generally, β(P + Q) �= β(P ) + β(Q) for arbitrary tensors P and Q. However, the

equation β(P +Q) = β(P ) + β(Q) holds for the construction of P̄ as we now show.
Let Q be the tensor where Qijk = (1− α)vi and define qi = (1− α)vi to simplify

the notation. Then P̄ = αP +Q. Let us first consider β1:

β1(αP +Q) = min
k∈〈n〉

[
min
j∈S

∑
i∈S̄

(
αPijk +Qijk

)
+min

j∈S̄

∑
i∈S

(
αPijk +Qijk

)]

= min
k∈〈n〉

[
min
j∈S

∑
i∈S̄

(
αPijk + qi

)
+min

j∈S̄

∑
i∈S

(
αPijk + qi

)]

= min
k∈〈n〉

[(
min
j∈S

∑
i∈S̄

αPijk +min
j∈S̄

∑
i∈S

αPijk

)
+
∑
i

qi

]
= β1(αP ) + β1(Q).

By the same derivation,

β2(αP +Q) = β2(αP ) + β2(Q).

Now note that, because β1(Q) = β2(Q) = 1− α independently of the set S, we have

β(αP +Q) = αβ(P ) + 2(1− α).

We are interested in the case that β(αP+Q) > 1 to apply the uniqueness theorem.
Note that β > 1 can be true even if α > 1/2. However, α < 1/2 implies that β > 1.
Thus, the condition β > 1 is stronger.

Appendix B. The tensor set. The following problems gave us the tensors P
for our experiments, after they were normalized to be column stochastic matrices.

B.1. 3 × 3 × 3.

R3,1 =

⎡
⎣
1 1 1 1 0 0 0 0 0
1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 0 1 0

⎤
⎦

R3,2 =

⎡
⎣
0 0 0 1 0 1 1 1 0
0 0 0 0 1 1 0 0 0
1 1 1 0 1 0 1 0 1

⎤
⎦

R3,3 =

⎡
⎣
0 1 0 1 0 1 1 1 0
0 0 0 0 1 0 0 1 0
1 1 1 1 1 0 1 0 1

⎤
⎦

R3,4 =

⎡
⎣
0 0 1 1 0 0 1 1 1
0 0 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1 0

⎤
⎦

R3,5 =

⎡
⎣
0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1 0
1 1 1 1 0 0 0 0 0

⎤
⎦

B.2. 4 × 4 × 4.

R4,1 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

⎤
⎥⎥⎦
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R4,2 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0
1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1

⎤
⎥⎥⎦

R4,3 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0

⎤
⎥⎥⎦

R4,4 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0

⎤
⎥⎥⎦

R4,5 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1

⎤
⎥⎥⎦

R4,6 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1

⎤
⎥⎥⎦

R4,7 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0

⎤
⎥⎥⎦

R4,8 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1

⎤
⎥⎥⎦

R4,9 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1

⎤
⎥⎥⎦

R4,10 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎦

R4,11 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1

⎤
⎥⎥⎦

R4,12 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1

⎤
⎥⎥⎦

R4,13 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0

⎤
⎥⎥⎦

R4,14 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1

⎤
⎥⎥⎦

R4,15 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1

⎤
⎥⎥⎦
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R4,16 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0
1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0

⎤
⎥⎥⎦

R4,17 =

⎡
⎢⎢⎣
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0
1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0

⎤
⎥⎥⎦

R4,18 =

⎡
⎢⎢⎣
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0

⎤
⎥⎥⎦

R4,19 =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

⎤
⎥⎥⎦

B.3. 6 × 6 × 6.

R6,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0
1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

R6,2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

R6,3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

R6,4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

R6,5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

B.4. 3 × 3 × 3 × 3. The final example needs to have the column normalization
and dangling correction applied. It consists of only 15 nonzeros in the original tensor.
Because there is only one, we use the canonical A.
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A(3, 3, 3, 2) = 1

A(2, 1, 1, 3) = 1

A(1, 2, 1, 3) = 1

A(2, 2, 1, 3) = 1

A(2, 3, 1, 3) = 1

A(3, 3, 1, 3) = 1

A(1, 1, 2, 3) = 1

A(1, 2, 2, 3) = 1

A(2, 2, 2, 3) = 1

A(1, 3, 2, 3) = 1

A(2, 3, 2, 3) = 1

A(3, 3, 2, 3) = 1

A(3, 1, 3, 3) = 1

A(3, 2, 3, 3) = 1

A(3, 3, 3, 3) = 1
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